
Generative models

how they work and how to train them

Simon Coste

September 20, 2023

Intro: Generative Modelling

x1∗ , . . . , x
n
∗ : dataset drawn from an unknown distribution ρ∗ (“target”)

1

The two goals of generative modelling:

1. Generate ‘new’ samples from ρ∗ (direct problem)

2. Find a ‘good’ estimator ρ̂∗ for ρ∗ (inverse problem)

Examples of generative models: EBMs, GANs, VAEs, Normalizing

Flows, Neural ODEs, Noise Contrastive Estimation, Diffusions, Flow

matching, Consistency models

2

Energy-Based Models

3

Defining EBMs

Uθ : Rd → R+ = parametrized family of functions (“model energies”)

Definition of the model densities:

ρθ(x) =
e−Uθ(x)

Zθ
Zθ =

∫
e−Uθ(x)dx .

Examples:

• Uθ(x) = 〈x , θx〉 with θ a square matrix: centered Gaussian

distributions

• Uθ(x) = |x − θ|: family of Laplace distributions

• Uθ(x) = a complicated neural network with parameters θ: deep

EBMs

4

Defining EBMs

Uθ : Rd → R+ = parametrized family of functions (“model energies”)

Definition of the model densities:

ρθ(x) =
e−Uθ(x)

Zθ
Zθ =

∫
e−Uθ(x)dx .

Examples:

• Uθ(x) = 〈x , θx〉 with θ a square matrix: centered Gaussian

distributions

• Uθ(x) = |x − θ|: family of Laplace distributions

• Uθ(x) = a complicated neural network with parameters θ: deep

EBMs

4

Training an EBM

The goal is to find the optimal θ∗ achieving the best ‘fit’ between the

model ρθ and the true unknown density ρ∗.

θ∗ ∈ arg mindist(ρ∗, ρθ)

Q: how do we choose the distance?

5

Using an EBM

Once Uθ∗ has been trained, new synthetic samples are obtained by

sampling from the distribution

ρ̂∗ = ρθ∗ =
e−Uθ∗

Zθ∗
.

This step typically needs MCMC methods such as Langevin:

Xτ+1 = Xτ − η∇xUθ∗(Xτ) +
√
ηξτ ξτ ∼ N (0, I)

This is called “implicit generation” [Du and Mordatch 19].

6

Advantages of EBMs

• Simplicity. Only one neural network Uθ
→ VAEs and GANs require at least two!

• Flexibility. We can exploit the tradeoff between quality and cost

→ impossible with feed-forward generators such as GANs or NFs

• Compositionality. Combining different EBMs is as simple

→ just add the energies

• Reusability. Can be used to help various other tasks

→ inpainting, importance sampling, OOD detection. . .

7

Choosing the right loss for EBM learning

Kullback-Leibler divergence ↔ max-likelihood

dist(ρθ, ρ∗) = EX∼ρ∗ log ρ∗(X))− log ρθ(X)

≈ cst− 1

n

∑
log ρθ(x∗i)

Fisher divergence

dist(ρθ, ρ∗) = EX∼ρ∗ |∇ log ρ∗(X)−∇ log ρθ(X)|2

≈ 1

n

∑
|∇ log ρ∗(x

∗
i)−∇ log ρθ(x∗i)|2

Other losses?

Bregman, NCE loss, etc.

8

Choosing the right loss for EBM learning

Kullback-Leibler divergence ↔ max-likelihood

dist(ρθ, ρ∗) = EX∼ρ∗ log ρ∗(X))− log ρθ(X)

≈ cst− 1

n

∑
log ρθ(x∗i)

Fisher divergence

dist(ρθ, ρ∗) = EX∼ρ∗ |∇ log ρ∗(X)−∇ log ρθ(X)|2

≈ 1

n

∑
|∇ log ρ∗(x

∗
i)−∇ log ρθ(x∗i)|2

Other losses?

Bregman, NCE loss, etc.

8

Choosing the right loss for EBM learning

Kullback-Leibler divergence ↔ max-likelihood

dist(ρθ, ρ∗) = EX∼ρ∗ log ρ∗(X))− log ρθ(X)

≈ cst− 1

n

∑
log ρθ(x∗i)

Fisher divergence

dist(ρθ, ρ∗) = EX∼ρ∗ |∇ log ρ∗(X)−∇ log ρθ(X)|2

≈ 1

n

∑
|∇ log ρ∗(x

∗
i)−∇ log ρθ(x∗i)|2

Other losses?

Bregman, NCE loss, etc.

8

Training procedures

I: max-likelihood

Gradient ascent on Energy-Based Models

Goal: maximize L(θ) = E∗[log ρθ] = −E∗[Uθ + logZθ]

∇θL(θ) = −E∗[Uθ]−∇ logZθ

Computation of ∇θ logZθ:

∇θZθ
Zθ

=

∫
−∇θUθ(x)e−Uθ(x)

1

Zθ
dx = −Eθ[∇θUθ]

Gradient of the log-likelihood

∇θL(θ) = Eθ[∇θUθ]− E∗[∇θUθ]

Gradient ascent with stepsize η > 0 :

θt+1 − θt = η × (Eθt [∇θUθt]− E∗[∇θUθt])

9

∇θL(θ) = ∇θ (Eθ[Uθ(X)]− E∗[Uθ(X)])

E∗[Uθ]

x∗i = ”positive samples”

from ρ∗
≈ 1

n

∑
i Uθt (x

i
∗)

Eθt [Uθ]

yi = ”negative samples”

from ρθt
≈ 1

n

∑
i Uθt (yi)

”contrastive learning” :

• pull down the energy of positive samples, E∗[Uθ]

• pull up the energy of negative samples, Eθt [Uθ]

10

11

MCMC sampling is too costly

Q: at each gradient step, how do we get the negative samples for

computing Eθ[Uθ]?

A: using MCMC/Langevin methods...

At step t, initialize X i
0 (“walkers”), then for τ = 0, . . . ,Tmix ,

X i
τ+1 = X i

τ − η∇xUθ(X i
τ) +

√
2ηξτ

and estimate

Eθt [Uθt] ≈
1

Nwalkers

Nwalkers∑
i=1

Uθt (X
i
Tmix

).

If Tmix is large, this is too costly.

Each gradient ascent step will consume Tmix MCMC sampling steps for

each of the Nwalkers chains!

12

MCMC sampling is too costly

Q: at each gradient step, how do we get the negative samples for

computing Eθ[Uθ]?

A: using MCMC/Langevin methods...

At step t, initialize X i
0 (“walkers”), then for τ = 0, . . . ,Tmix ,

X i
τ+1 = X i

τ − η∇xUθ(X i
τ) +

√
2ηξτ

and estimate

Eθt [Uθt] ≈
1

Nwalkers

Nwalkers∑
i=1

Uθt (X
i
Tmix

).

If Tmix is large, this is too costly.

Each gradient ascent step will consume Tmix MCMC sampling steps for

each of the Nwalkers chains!
12

Contrastive Divergence with k steps (CD-k), [Hinton 2005]

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• initialize each chain directly at the training points {x i∗}.

[Hyvarinen 2007]

in the limit of small noise η → 0, CD-1 = score matching.

[Yair and Michaeli 20] CD-1 is an adversarial game

[Agoritsas et al 23] Effect of non-convergent sampling

13

Contrastive Divergence with k steps (CD-k), [Hinton 2005]

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• initialize each chain directly at the training points {x i∗}.

[Hyvarinen 2007]

in the limit of small noise η → 0, CD-1 = score matching.

[Yair and Michaeli 20] CD-1 is an adversarial game

[Agoritsas et al 23] Effect of non-convergent sampling

13

Persistent Contrastive Divergence (PCD), [Tieleman 2008]

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• Initialize each chain directly at the training points {x i∗}.
• initialize each chain directly where the previous chain ended.

Practically: maintain a set of walkers X i
t . At step t + 1,

1) approximate Eθt [Uθt] ≈ 1
n

∑N
i=1 Uθt (X

i
t),

2) compute θt+1 using the approximation,

3) move the walkers with Xt+1 = Xt − η∇Uθt+1(Xt) +
√

2ηξ

⇒ leads to mode collapse.

14

Persistent Contrastive Divergence (PCD), [Tieleman 2008]

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• Initialize each chain directly at the training points {x i∗}.
• initialize each chain directly where the previous chain ended.

Practically: maintain a set of walkers X i
t . At step t + 1,

1) approximate Eθt [Uθt] ≈ 1
n

∑N
i=1 Uθt (X

i
t),

2) compute θt+1 using the approximation,

3) move the walkers with Xt+1 = Xt − η∇Uθt+1(Xt) +
√

2ηξ

⇒ leads to mode collapse.

14

Replay buffer techniques [Du and Mordatch 2019]

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• Initialize each chain directly at the training points {x i∗}.
• initialize each chain directly where the previous chain ended.

• initialize, sometimes from the past, sometimes from pure noise

+ many other tricks.

15

Training procedures

II: alternative losses

a Noise Contrastive methods

b GANs

c Score Matching

d Denoising score matching

16

a. Noise Contrastive Estimation [Gutmann & Hyvarinen 2010]

Let µ be a known density and yi ∼ µ be iid.

Idea: train a binary classifier with logistic regression to distinguish

between true samples x∗i and fake samples yi .

Bayes’ rule gives the optimal classifier Dopt:

Dopt(x) = P(true | x) =
p(x | true)

p(x | fake) + p(x | true)

=
ρ∗(x)

ρ∗(x) + µ(x)

Goal: maximize R(θ) =
∑n

i=1 logDθ(x∗i) + log(1− Dθ(yi)).

Set Dθ(x) = Fθ(x)/(Fθ(x) + µ(x)) with Fθ(x) = e−Uθ(x)+cθ .

If Dθ∗ ≈ Dopt then Fθ∗ ≈ ρ∗

The normalization
∫
e−Uθ+cθ = 1 is automatic!

17

a. Noise Contrastive Estimation [Gutmann & Hyvarinen 2010]

Let µ be a known density and yi ∼ µ be iid.

Idea: train a binary classifier with logistic regression to distinguish

between true samples x∗i and fake samples yi .

Bayes’ rule gives the optimal classifier Dopt:

Dopt(x) = P(true | x) =
p(x | true)

p(x | fake) + p(x | true)

=
ρ∗(x)

ρ∗(x) + µ(x)

Goal: maximize R(θ) =
∑n

i=1 logDθ(x∗i) + log(1− Dθ(yi)).

Set Dθ(x) = Fθ(x)/(Fθ(x) + µ(x)) with Fθ(x) = e−Uθ(x)+cθ .

If Dθ∗ ≈ Dopt then Fθ∗ ≈ ρ∗

The normalization
∫
e−Uθ+cθ = 1 is automatic!

17

b. Limitations of NCE and GANs

• if µ is too close to ρ∗ then training the classifier is too difficult

• if µ is too different to ρ∗ then classifying is too easy, there are

near-optimal classifiers very different than the optimal one

the GAN idea

⇒ also train a ”fake sample generator”, say µβ , instead of using

always the same fixed generator µ

GAN objective: minθ maxβ E∗[logDθ] + Eµβ
[log(1− Dθ)]

Min-Max problems are hard.

18

c. Score Matching [Hyvarinen 2005]

Goal: minimize SM(θ) = E∗[|∇ log ρθ −∇ log ρ∗|2].

Hyvarinen 2005

SM(θ) = cst + E∗[|∇ log ρθ|2 + 2∆ log ρθ].

• Parametrize the score ∇ log ρθ with a neural network sθ

• Minimize E∗[|sθ|2 + 2∇x · (sθ)] using gradient descent

Problem 1: for ∇θSM(θ) we need to compute ”double derivatives” like

∇θ∇x · sθ(x).

Problem 2: inferring log ρ from sθ ≈ ∇ log ρθ ?

19

Proof of Hyvarinen’s identity: it’s just an integration by parts.

For p, q two smooth densities with fast decay at ∞,

Ep[|∇ log p −∇ log q|2] =

∫
p|∇ log p −∇ log q|2

=

∫
p|∇p/p −∇q/q|2

= cp +

∫
p|∇/q|2 − 2

∫
∇p · ∇ log q

= cp +

∫
p|∇ log q|2 + 2

∫
p∇ · ∇ log q

= cp + Ep[|∇ log q|2 + 2∆ log q]

20

d. Denoising Score Matching [Vincent 2009]

Let us corrupt the original samples with noise:

y∗i = x∗i + εi εi ∼ N (0, σ2)

distribution of y∗i = ρ∗ ∗ N .

Vincent 2009

SM(θ) = cst + EX∼ρ∗,ε∼g [|∇ log g(ε)−∇ log ρθ(X + ε)|2].

• Parametrize the score of the noisy distribution with sθ (NN)

• Minimize E[|ε/σ − sθ(X + ε)|2]

• ⇒ no double derivatives!

21

Limitations

1) In the presence of high energy barriers, SM methods and variants

cannot learn the relative weights of the modes and/or lead to mode

collapse.

2) The score sθ∗ ≈ ∇ log ρ∗ does not give direct access to the density!

3) Results were good... but not as good as GANs

22

Training procedures III: some

insights from toy models

Model: all gaussian mixtures with modes a = −10, b = 10:

Uz(x) = − log
(
e−|x−a|

2/2 + e−ze−|x−b|
2/2
)

Zz = (1 + e−z)
√

2π

ρz(x) =
e−|x−a|

2/2 + e−ze−|x−b|
2/2

(1 + e−z)
√

2π

Target: ρ∗ = ρz∗ for some z∗ with q∗ = e−z∗

1+e−z∗ ≈ 0.8.

23

Useful approximations

∇xUz(x) =
(x − a)e−(x−a)

2/2 + e−z(x − b)e−(x−b)
2/2

e−(x−a)2/2 + e−ze−(x−b)2/2

≈ (x − a)1x close to a + (x − b)1x close to b

∇zUz(x) = e−ze−(x−b)
2/2/Uz(x) ≈ 1x is close to b

∀z ,w Ew [∇zUz] ≈ Pw (mode b) = e−w

1+e−w

24

Gradient flow (continuous version of the discrete gradient descent):

ż(t) = −∇z loss(ρ∗, ρz(t))

where loss is one of the various objectives above.

25

Success of max-likelihood

ż(t) = Ez(t)[∇zUz(t)]− Ez∗ [∇zUz(t)]

≈ e−z(t)

1 + e−z(t)
− e−z∗

1 + e−z∗
.

Clearly this system converges towards its unique FP z(t) = z∗.

26

Failure of score matching

ż(t) = −∇zSM(z) = ∇zEz∗ [|∇ log ρz(t) −∇ log ρz∗ |2]

Remember that

∇ log ρz(x) ≈ (x − a)1x close to a + (x − b)1x close to b

⇒ ∇ log ρz(x) does not depend on z , hence ∇zSM(z) ≈ 0.

This leads to the “no learning” phenomenon ż(t) ≈ 0

27

Mode collapse in PCD

Here the negative samples are generated using

dXt = −∇xUz(t)(Xt)dt +
√

2dBt

Remember that

∇xUz(x) ≈ (x − a)1x close to a + (x − b)1x close to b

Xt close to b ⇒ dXt ≈ −(Xt − b)dt +
√

2dBt : Ornstein-Uhlenbeck

Xt close to a ⇒ dXt ≈ −(Xt − a)dt +
√

2dBt : Ornstein-Uhlenbeck

There is no transfer of walkers between modes a and b!

The distribution of Xt does not change and is equal to ρz(0):

ż(t) ≈ e−z(0)

1 + e−z(0)
− e−z∗

1 + e−z∗
= cst

This leads to mode collapse, z(t)→ ±∞.

28

Thanks for the invitation!

29

Some references (with links)

How to train your EBMs (Song & Kingma)

Score Matching (Hyvarinen)

Denoising score matching (Vincent)

Noise contrastive estimation (Gutman and Hyvarinen)

Conditional NCE (Ma and Collins)

Improved CD (Du et al.)

Implicit generation (Du et al.)

Reduce, Reuse, Recycle (Du et al.)

Efficient training of EBMs (Carbone et al.)

From SM to diffusion models (Song and Ermon)

30

https://arxiv.org/abs/2101.03288
https://www.jmlr.org/papers/volume6/hyvarinen05a/hyvarinen05a.pdf
https://www.iro.umontreal.ca/~vincentp/Publications/smdae_techreport.pdf
https://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf
https://arxiv.org/pdf/1809.01812.pdf
https://proceedings.mlr.press/v139/du21b/du21b.pdf
https://arxiv.org/pdf/1903.08689.pdf
https://arxiv.org/abs/2302.11552
https://arxiv.org/abs/2305.19414
https://arxiv.org/pdf/1907.05600.pdf

	Intro: Generative Modelling
	Energy-Based Models
	Training procedures I: max-likelihood
	Training procedures II: alternative losses
	Training procedures III: some insights from toy models

