
Energy-Based Models

and how to train them

Simon Coste

joint work with Davide Carbone, Mengjian Hua, Eric Vanden-Eijnden

https://arxiv.org/abs/2305.19414

April 1, 2024

https://arxiv.org/abs/2305.19414

Generative Modelling and EBMs

x1∗ , . . . , x
n
∗ : training samples from an unknown distribution ρ∗ (“target”)

The two goals of generative modelling:

1. Generate ‘new’ samples from ρ∗ (direct problem)

2. Find a good, interpretable estimator for ρ∗ (inverse problem)

EBMs, GANs, VAEs, Normalizing Flows, Neural ODEs, Diffusions, Flow

matching...

1

EBMs

Uθ : Rd → R+ = parametrized family of functions (“model energies”)

Definition of the model densities:

ρθ(x) =
e−Uθ(x)

Zθ
Zθ =

∫
e−Uθ(x)dx .

Which θ∗ achieves the best ‘fit’ between ρθ and ρ∗?

2

Toy model: Gaussian mixtures

Model: all gaussian mixtures with modes a = −10, b = 10:

Uz(x) = − log
(
e−|x−a|

2/2 + e−ze−|x−b|
2/2
)

Zz = (1 + e−z)
√

2π

ρz(x) =
e−|x−a|

2/2 + e−ze−|x−b|
2/2

(1 + e−z)
√

2π

Target: ρ∗ = ρz∗ for some z∗ with q∗ = e−z∗

1+e−z∗ ≈ 0.8.
3

Training procedures

Score Matching

We minimize the Stein divergence SM(θ) = E∗[|∇ log ρθ −∇ log ρ∗|2].

Gradient flow

θ̇(t) = −∂θE∗[|∇ log ρθ(t) −∇ log ρ∗|2]

Pros: efficiency ([Hyvarinen 2005], [Vincent 2009])

Cons: in the context of high energy barriers, SM cannot learn the relative

masses of the energy wells.

4

Proof of failure.

If x ∼ ρ∗, then whp x is close to either a or b.

For any z we thus have

∇ log ρz(x) =
(x − a)e−(x−a)

2/2 + e−z(x − b)e−(x−b)
2/2

e−(x−a)2/2 + e−ze−(x−b)2/2

≈ (x − a)1x close to a + (x − b)1x close to b

∇ log ρz(x) does not depend on z , hence ∂zSM(z) = 0

⇒“no learning” phenomenon,

ż(t) ≈ 0

5

Gradient ascent on Energy-Based Models

We minimize the KL divergence — that is,

We maximize the Log-Likelihood L(θ) = E∗[log ρθ] = −E∗[Uθ + logZθ].

Gradient flow: θ̇t = ∂θL(θt) = −∂θ logZθ − E∗[∂θUθ].

Computation of ∂θ logZθ:

∂θZθ
Zθ

=

∫
−∂θUθ(x)e−Uθ(x)

1

Zθ
dx = −Eθ[∂θUθ]

Gradient flow

θ̇(t) = Eθ(t)[∂θUθ(t)]− E∗[∂θUθ(t)].

E∗[∂θUθ]: is computed on the training samples ≈ 1
n

∑
i ∂θUθ(x i∗)

Eθt [∂θUθ]: needs samples from the current model ρθt

6

Proof of convergence.
∂zUz(x) = e−ze−(x−b)

2/2/Uz(x) ≈ 1x is close to b hence

∀z ,w Ew [∂zUz] ≈ Pw (mode b) =
e−w

1 + e−w

ż(t) ≈ e−z(t)

1 + e−z(t)
− e−z∗

1 + e−z∗
.

Clearly this system converges towards its unique FP z(t) = z∗.

When estimating E∗ using the samples x i∗ there can be a small

correction: the empirical mass of mode b is replaced with q̂∗ =
e−ẑ∗

1+e−ẑ∗ with |ẑ∗ − ẑ | = O(n−1/2).

7

MCMC sampling is too costly

Q: at each gradient step, how do we estimate Eθ[∂θUθ]?

A: using MCMC methods...

At step t, initialize X i
0 (“walkers”), then for τ = 0, . . . ,Tmix ,

X i
τ+1 = X i

τ − η∇Uθ(X i
τ) +

√
2ηξτ

and estimate

Eθ(t)[∂θUθ(t)] ≈
1

Nwalkers

Nwalkers∑
i=1

∂θUθ(t)(X
i
Tmix

).

If Tmix is large, this is too costly. Each gradient ascent step will consume

Tmix MCMC sampling steps for each of the Nwalkers chains!

cost = O(Ntraining steps × Nwalkers × Tmix)
8

Contrastive Divergence with k steps (CD-k), Hinton 2005

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• initialize each chain directly at the training points {x i∗}.

Let P̃θ be the distribution of the negative samples. The Gradient Flow

becomes

θ̇(t) = Ẽθ(t)[∂θUθ(t)]− E∗[∂θUθ(t)].

[Hyvarinen 2007]

in the limit of small noise η → 0, CD-1 = score matching.

[Yair and Michaeli 20] CD-1 is an adversarial game

9

Persistent Contrastive Divergence (PCD), [Tieleman 2008]

• don’t let the chain reach Tmix steps. Use only k steps (k = 1).

• Initialize each chain directly at the training points {x i∗}.
• initialize each chain directly where the previous chain ended.

Practically: maintain a set of walkers X i
t . At step t + 1,

1) approximate Eθt [∂θUθ(t)] ≈ 1
n

∑N
i=1 ∂θUθ(t)(X

i
t),

2) compute θt+1 using the approximation,

3) move the walkers with Xt+1 = Xt − η∇Uθ(t+1)(Xt) +
√

2ηξ

Let P̂θ(t) be the distribution of Xt . The gradient flow becomes

θ̇(t) = Êθ(t)[∂θUθ(t)]− E∗[∂θUθ(t)].

10

Mode collapse: one of the two modes disappears

11

Proof of mode collapse.

∇Uz(x) ≈ (x − a)1x close to a + (x − b)1x close to b

so if Xt is close to b, dXt ≈ −(Xt − b)dt +
√

2dBt : this is an

Ornstein-Uhlenbeck process centered at b. The two modes are stable.

There is no transfer of walkers from one mode to the other.

The distribution of Xt does not change and is equal to ρz(0), hence te

system becomes

ż(t) ≈ e−z(0)

1 + e−z(0)
− e−z∗

1 + e−z∗
.

This leads to mode collapse, z(t)→ ±∞.

12

Reweighting PCD with

Jarzynski’s identity

Searching for the reweighting

Let Ut be any family of evolving potentials (such as Uθt given above).

Consider the dynamics

dXt = −∇Ut(Xt)dt +
√

2dBt

Note ρ̂t the law of Xt and ρt = e−Ut/Zt .

∂t ρ̂t = ∆ρ̂t −∇ · (∇Ut ρ̂t)

ρt also solves this Fokker-Planck equation, hence ρt = ρ̂t only at

equilibrium; in general ρt 6= ρ̂t .

What is dρt
d ρ̂t

?

13

Jarzynski’s augmented system

We add an auxiliary weight Wt to the system:

dXt = −∇Ut(Xt)dt +
√

2dBt X0 ∼ ρ0 (1)

dWt = −WtU̇t(Xt)dt W0 = 1 (2)

Note that Wt is an explicit path integral: Wt = exp
{
−
∫ t

0
U̇s(Xs)ds

}
.

Theorem (Jarzynski reweighting)

E[ϕ(Xt)Wt]

E[Wt]
= EYt∼ρt [ϕ(Yt)]

First appearance: for the computation of Zt/Z0, [Jarzynski 1996]

14

Proof outline

ρt(x ,w) = density of (Xt ,Wt)

Define µt(x) =
∫∞
0

wρt(x ,w)dxdw , so that

E[ϕ(Xt)Wt] =

∫
ϕ(x)µt(x)dx

1. Use Fokker-Planck for (1)-(2) to get

µ̇t = ∇ · (∇Utµt +∇µt) + U̇tµt (3)

2. Check that ρt = e−Ut−log Zt also solves (3)

3. Unicity of solutions of parabolic PDEs

15

Algorithm 1 Sequential Monte-Carlo training with Jarzynski correction

1: Ai
0 = 1 for i = 1, . . . ,N.

2: for k = 0, . . . ,K − 1 do

3: W̄ i
k = W i

k/
∑N

j=1 W
i
k

4: ∇k =
∑N

i=1 W̄
i
k∂θUθk (X i

k)− n−1
∑n

j=1 ∂θUθk (x j∗) . gradient

5: θk+1 = opt(θk ,∇k) . optimizer

6: for i = 1, ...,N do

7: X i
k+1 = X i

k − h∇Uθk (X i
k) +

√
2h ξik . ULA

8: W i
k+1 = W i

ke
αk+1(X

i
k+1,X

i
k)+αk (X

i
k ,X

i
k+1) . update weight

9: Resampling step (optional).

16

0 50 100 150 200 250
Rescaled Iterations

0.0

0.1

0.2

0.3

0.4

0.5

p

Mass of the first mode

p *
Algo 1
PCD
CD

0 50 100 150 200 250
Rescaled Iterations

10

8

6

4

2

0

2

4

6

a,
b

Means

Algo 1
PCD
CD
a *
b *

0 50 100 150 200 250
Rescaled Iterations

10 5

10 4

10 3

10 2

10 1

100

101

KL

KL divergence

Algo 1
Eq. (21)
PCD
CD

Figure 1: Learning also the modes

17

Fully Discrete version

X = discrete space, Uθ : X → R+

Πθ(·, ·) = Markov kernel family on X with e−Uθ/Zθ as reversible

distribution

Let Xk and Ak be given by the following discrete random dynamic:

Xk+1 ∼ Πt=1
θk+1

(Xk , ·) (4)

Ak+1 = Ak + Uθk (Xk)− Uθk+1
(Xk). (5)

Then, for all k ,

Eθk [∂θUθk] =
E[eAk∂θUθ(Xk)]

E[eAk]
Zθk = E[eAk] (6)

18

Discrete setting

Figure 2: X = quantized Gray-coded version of [0, 1]2. Here |X | = 232.
19

Some references

How to train your EBMs (Song & Kingma)

Improved CD (Du et al.)

Reduce, Reuse, Recycle (Du et al.)

Annealed Importance Sampling (Neal)

Gradient-guidance (Liu et al.)

Jarzynski reweighting (Carbone, Hua, C., Vanden-Eijnden)

20

https://arxiv.org/abs/2101.03288
https://proceedings.mlr.press/v139/du21b/du21b.pdf
https://arxiv.org/abs/2302.11552
https://arxiv.org/abs/physics/9803008
https://arxiv.org/abs/2210.05782
https://arxiv.org/pdf/2305.19414.pdf

	Generative Modelling and EBMs
	Training procedures
	Reweighting PCD with Jarzynski's identity

