Energy-Based Models

and how to train them

Simon Coste joint work with Davide Carbone, Mengjian Hua, Eric Vanden-Eijnden https://arxiv.org/abs/2305.19414 April 1, 2024

Generative Modelling and EBMs

 x_*^1, \ldots, x_*^n : training samples from an unknown distribution ρ_* ("target")

The two goals of generative modelling:

- 1. Generate 'new' samples from ρ_* (direct problem)
- 2. Find a good, interpretable estimator for ρ_* (inverse problem)

 $\mathsf{EBMs},$ GANs, VAEs, Normalizing Flows, Neural ODEs, Diffusions, Flow matching...

 $U_{\theta}: \mathbb{R}^d \to \mathbb{R}_+ =$ parametrized family of functions ("model energies")

Definition of the model densities:

$$ho_{ heta}(x) = rac{e^{-U_{ heta}(x)}}{Z_{ heta}} \qquad \qquad Z_{ heta} = \int e^{-U_{ heta}(x)} dx.$$

Which θ_* achieves the best 'fit' between ρ_{θ} and ρ_* ?

Toy model: Gaussian mixtures

Model: all gaussian mixtures with modes a = -10, b = 10:

$$U_z(x) = -\log\left(e^{-|x-a|^2/2} + e^{-z}e^{-|x-b|^2/2}\right)$$

$$Z_z = (1+e^{-z})\sqrt{2\pi}$$

$$\rho_z(x) = \frac{e^{-|x-a|^2/2} + e^{-z}e^{-|x-b|^2/2}}{(1+e^{-z})\sqrt{2\pi}}$$

Target: $\rho_* = \rho_{z_*}$ for some z_* with $q_* = \frac{e^{-z_*}}{1+e^{-z_*}} \approx 0.8$.

Training procedures

Score Matching

We minimize the Stein divergence $SM(\theta) = \mathbb{E}_*[|\nabla \log \rho_{\theta} - \nabla \log \rho_*|^2].$

Gradient flow

$$\dot{ heta}(t) = -\partial_{ heta} \mathbb{E}_*[|
abla \log
ho_{ heta(t)} -
abla \log
ho_*|^2]$$

Pros: efficiency ([Hyvarinen 2005], [Vincent 2009])

Cons: in the context of high energy barriers, SM cannot learn the relative masses of the energy wells.

Proof of failure.

If $x \sim \rho_*$, then whp x is close to either a or b.

For any z we thus have

$$\nabla \log \rho_z(x) = \frac{(x-a)e^{-(x-a)^2/2} + e^{-z}(x-b)e^{-(x-b)^2/2}}{e^{-(x-a)^2/2} + e^{-z}e^{-(x-b)^2/2}}$$
$$\approx (x-a)\mathbf{1}_{x \text{ close to } a} + (x-b)\mathbf{1}_{x \text{ close to } b}$$

 $\nabla \log \rho_z(x)$ does not depend on z, hence $\partial_z SM(z) = 0$ \Rightarrow "no learning" phenomenon,

$$\dot{z}(t) \approx 0$$

We minimize the KL divergence — that is, We maximize the Log-Likelihood $L(\theta) = \mathbb{E}_*[\log \rho_{\theta}] = -\mathbb{E}_*[U_{\theta} + \log Z_{\theta}].$ Gradient flow: $\dot{\theta}_t = \partial_{\theta} L(\theta_t) = -\partial_{\theta} \log Z_{\theta} - \mathbb{E}_*[\partial_{\theta} U_{\theta}].$

Computation of $\partial_{\theta} \log Z_{\theta}$:

$$\frac{\partial_{\theta} Z_{\theta}}{Z_{\theta}} = \int -\partial_{\theta} U_{\theta}(x) e^{-U_{\theta}(x)} \frac{1}{Z_{\theta}} dx = -\mathbb{E}_{\theta} [\partial_{\theta} U_{\theta}]$$

Gradient flow

$$\dot{\theta}(t) = \mathbb{E}_{\theta(t)}[\partial_{\theta} U_{\theta(t)}] - \mathbb{E}_{*}[\partial_{\theta} U_{\theta(t)}].$$

$$\begin{split} \mathbb{E}_*[\partial_\theta U_\theta]: \text{ is computed on the training samples} &\approx \frac{1}{n} \sum_i \partial_\theta U_\theta(\mathsf{x}^i_*) \\ \mathbb{E}_{\theta t}[\partial_\theta U_\theta]: \text{ needs samples from the current model } \rho_{\theta_t} \end{split}$$

Proof of convergence. $\partial_z U_z(x) = e^{-z} e^{-(x-b)^2/2} / U_z(x) \approx 1_x \text{ is close to } b$ hence

$$\forall z, w \qquad \mathbb{E}_w[\partial_z U_z] \approx \mathbb{P}_w(\text{ mode } b) = \frac{e^{-w}}{1 + e^{-w}}$$
$$\dot{z}(t) \approx \frac{e^{-z(t)}}{1 + e^{-z(t)}} - \frac{e^{-z_*}}{1 + e^{-z_*}}.$$

Clearly this system converges towards its unique FP $z(t) = z_*$.

When estimating \mathbb{E}_* using the samples x_*^i there can be a small correction: the empirical mass of mode *b* is replaced with $\hat{q}_* = \frac{e^{-\hat{z}_*}}{1+e^{-\hat{z}_*}}$ with $|\hat{z}_* - \hat{z}| = O(n^{-1/2})$.

MCMC sampling is too costly

Q: at each gradient step, how do we estimate $\mathbb{E}_{\theta}[\partial_{\theta} U_{\theta}]$? **A**: using MCMC methods...

At step t, initialize X_0^i ("walkers"), then for $\tau = 0, \ldots, T_{mix}$,

$$X_{\tau+1}^{i} = X_{\tau}^{i} - \eta \nabla U_{\theta}(X_{\tau}^{i}) + \sqrt{2\eta}\xi_{\tau}$$

and estimate

$$\mathbb{E}_{\theta(t)}[\partial_{\theta} U_{\theta(t)}] \approx \frac{1}{N_{\textit{walkers}}} \sum_{i=1}^{N_{\textit{walkers}}} \partial_{\theta} U_{\theta(t)}(X_{T_{\textit{mix}}}^{i}).$$

If T_{mix} is large, this is too costly. Each gradient ascent step will consume T_{mix} MCMC sampling steps for each of the $N_{walkers}$ chains!

$$\text{cost} = O(N_{ ext{training steps}} imes N_{walkers} imes T_{mix})$$

- don't let the chain reach T_{mix} steps. Use only k steps (k = 1).
- initialize each chain directly at the training points $\{x_*^i\}$.

Let $\tilde{\mathbb{P}}_{\theta}$ be the distribution of the negative samples. The Gradient Flow becomes

$$\dot{\theta}(t) = \tilde{E}_{\theta(t)}[\partial_{\theta} U_{\theta(t)}] - \mathbb{E}_*[\partial_{\theta} U_{\theta(t)}].$$

[Hyvarinen 2007] in the limit of small noise $\eta \rightarrow$ 0, CD-1 = score matching.

[Yair and Michaeli 20] CD-1 is an adversarial game

- don't let the chain reach T_{mix} steps. Use only k steps (k = 1).
- Initialize each chain directly at the training points $\{x_*^i\}$.
- initialize each chain directly where the previous chain ended.

Practically: maintain a set of walkers X_t^i . At step t + 1, 1) approximate $\mathbb{E}_{\theta_t}[\partial_{\theta} U_{\theta(t)}] \approx \frac{1}{n} \sum_{i=1}^N \partial_{\theta} U_{\theta(t)}(X_t^i)$,

- 2) compute θ_{t+1} using the approximation,
- 3) move the walkers with $X_{t+1} = X_t \eta \nabla U_{\theta(t+1)}(X_t) + \sqrt{2\eta}\xi$

Let $\hat{\mathbb{P}}_{\theta(t)}$ be the distribution of X_t . The gradient flow becomes

$$\dot{ heta}(t) = \hat{\mathbb{E}}_{ heta(t)}[\partial_{ heta} U_{ heta(t)}] - \mathbb{E}_*[\partial_{ heta} U_{ heta(t)}].$$

Mode collapse: one of the two modes disappears

Proof of mode collapse.

 $abla U_z(x)pprox (x-a) 1_{x ext{ close to } a} + (x-b) 1_{x ext{ close to } b}$

so if X_t is close to b, $dX_t \approx -(X_t - b)dt + \sqrt{2}dB_t$: this is an Ornstein-Uhlenbeck process centered at b. The two modes are stable. There is no transfer of walkers from one mode to the other. The distribution of X_t does not change and is equal to $\rho_{z(0)}$, hence te

system becomes

$$\dot{z}(t) pprox rac{e^{-z(0)}}{1+e^{-z(0)}} - rac{e^{-z_*}}{1+e^{-z_*}}.$$

This leads to mode collapse, $z(t)
ightarrow \pm \infty$.

Reweighting PCD with Jarzynski's identity

Let U_t be any family of evolving potentials (such as U_{θ_t} given above). Consider the dynamics

$$dX_t = -\nabla U_t(X_t)dt + \sqrt{2}dB_t$$

Note $\hat{\rho_t}$ the law of X_t and $\rho_t = e^{-U_t}/Z_t$.

$$\partial_t \hat{\rho}_t = \Delta \hat{\rho}_t - \nabla \cdot (\nabla U_t \hat{\rho}_t)$$

 ρ_t also solves this Fokker-Planck equation, hence $\rho_t = \hat{\rho}_t$ only at equilibrium; in general $\rho_t \neq \hat{\rho}_t$.

We add an auxiliary weight W_t to the system:

$$dX_t = -\nabla U_t(X_t)dt + \sqrt{2}dB_t \qquad X_0 \sim \rho_0 \qquad (1)$$

$$dW_t = -W_t \dot{U}_t(X_t)dt \qquad W_0 = 1 \qquad (2)$$

Note that W_t is an explicit path integral: $W_t = \exp\left\{-\int_0^t \dot{U}_s(X_s)ds\right\}$.

Theorem (Jarzynski reweighting)

$$\frac{\mathbb{E}[\varphi(X_t)W_t]}{\mathbb{E}[W_t]} = \mathbb{E}_{Y_t \sim \rho_t}[\varphi(Y_t)]$$

First appearance: for the computation of Z_t/Z_0 , [Jarzynski 1996]

Proof outline

 $\rho_t(x, w) = \text{density of } (X_t, W_t)$ Define $\mu_t(x) = \int_0^\infty w \rho_t(x, w) dx dw$, so that

$$\mathbb{E}[\varphi(X_t)W_t] = \int \varphi(x)\mu_t(x)dx$$

1. Use Fokker-Planck for (1)-(2) to get

$$\dot{\mu}_t = \nabla \cdot (\nabla U_t \mu_t + \nabla \mu_t) + \dot{U}_t \mu_t \tag{3}$$

- 2. Check that $\rho_t = e^{-U_t \log Z_t}$ also solves (3)
- 3. Unicity of solutions of parabolic PDEs

Algorithm 1 Sequential Monte-Carlo training with Jarzynski correction

1:
$$A_0^i = 1$$
 for $i = 1, ..., N$.
2: for $k = 0, ..., K - 1$ do
3: $\overline{W}_k^i = W_k^i / \sum_{j=1}^N W_k^j$
4: $\nabla_k = \sum_{i=1}^N \overline{W}_k^i \partial_\theta U_{\theta_k}(X_k^i) - n^{-1} \sum_{j=1}^n \partial_\theta U_{\theta_k}(x_*^j) \qquad \triangleright \text{ gradient}$
5: $\theta_{k+1} = \operatorname{opt}(\theta_k, \nabla_k) \qquad \triangleright \text{ optimizer}$
6: for $i = 1, ..., N$ do
7: $X_{k+1}^i = X_k^i - h \nabla U_{\theta_k}(X_k^i) + \sqrt{2h} \xi_k^i \qquad \triangleright \text{ ULA}$
8: $W_{k+1}^i = W_k^i e^{\alpha_{k+1}(X_{k+1}^i, X_k^i) + \alpha_k(X_k^i, X_{k+1}^i)} \qquad \triangleright \text{ update weight}$
9: Resampling step (optional).

Figure 1: Learning also the modes

 $\mathcal{X} = \mathsf{discrete} \text{ space}, \ U_{\theta} : \mathcal{X} \to \mathbb{R}_+$

 $\Pi_\theta(\cdot,\cdot) = {\sf Markov \ kernel \ family \ on \ } {\cal X} \ {\sf with \ } e^{-U_\theta}/Z_\theta \ {\sf as \ reversible} \ {\sf distribution}$

Let X_k and A_k be given by the following discrete random dynamic:

$$X_{k+1} \sim \Pi^{t=1}_{\theta_{k+1}}(X_k, \cdot) \tag{4}$$

$$A_{k+1} = A_k + U_{\theta_k}(X_k) - U_{\theta_{k+1}}(X_k).$$
(5)

Then, for all k,

$$\mathbb{E}_{\theta_{k}}[\partial_{\theta} U_{\theta_{k}}] = \frac{\mathbb{E}[e^{A_{k}}\partial_{\theta} U_{\theta}(X_{k})]}{\mathbb{E}[e^{A_{k}}]} \qquad \qquad Z_{\theta_{k}} = \mathbb{E}[e^{A_{k}}] \qquad (6)$$

Discrete setting

data samples	true heatmap	cd	pcd	jarzynski	modes masses
0	\bigcirc	()	\bigcirc	\bigcirc	
∿	\sim	, e 45	\sim	\sim	
*** *** **		- 1 			
An		An ang ini ang Barat sa ang ini ang Barat sa ang ini ang ini ang ini ang ini ang ini ang ini ang ini ang ini ang ini ang inina ang ina ang inang ina ang ina ang ina ang ina ang ina ang ina a			

Figure 2: \mathcal{X} = quantized Gray-coded version of $[0,1]^2$. Here $|\mathcal{X}| = 2^{32}$.

How to train your EBMs (Song & Kingma)

```
Improved CD (Du et al.)
```

Reduce, Reuse, Recycle (Du et al.)

Annealed Importance Sampling (Neal)

Gradient-guidance (Liu et al.)

Jarzynski reweighting (Carbone, Hua, C., Vanden-Eijnden)