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Generative Modelling and EBMs
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Xy

,x2: training samples from an unknown distribution p, (“target”)

The two goals of generative modelling:
1. Generate ‘new’ samples from p, (direct problem)

2. Find a good, interpretable estimator for p, (inverse problem)

EBMs, GANs, VAEs, Normalizing Flows, Neural ODEs, Diffusions, Flow
matching...



Up : RY = R, = parametrized family of functions (“model energies”)

Definition of the model densities:
e—Uo(x)

Zy

po(x) = Zy = /e_U"(X)dx.

Which 6, achieves the best ‘fit" between py and p,?



Toy model: Gaussian mixtures

Model: all gaussian mixtures with modes a = —10, b = 10:

Up(x) = —log (e71x3/2 4 ¢~z Ix-b/2)
Z, =(1+e*)Vor

ef|xfa|2/2 + efzef|x7b|2/2

(1+e2)V2r

pZ(X) =
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Training procedures



Score Matching

We minimize the Stein divergence SM(0) = E.[|V log ps — V log p.|?].
Gradient flow
0(t) = —09E..[|V log pa(r) — V log p.|*]

Pros: efficiency ([Hyvarinen 2005], [Vincent 2009])

Cons: in the context of high energy barriers, SM cannot learn the relative
masses of the energy wells.

=(t)




Proof of failure.

If x ~ p,, then whp x is close to either a or b.

For any z we thus have

_ —(X—a)2/2 —z _ —(x—b)2/2
x —a)e + e *(x — b)e
;IngZ(X)_( ) “(x—2)2 ,(, —b)22

e~ (x=a)?/2 4 g—zg—(x—b)?/

~ (X - a)]-x close to a T (X - b)]-x close to b

V log p-(x) does not depend on z, hence 9,SM(z) =0

= "“no learning” phenomenon,

z(t)~0



Gradient ascent on Energy-Based Models

We minimize the KL divergence — that is,
We maximize the Log-Likelihood L(0) = E.[log pg] = —E.[Uy + log Zy].

Gradient flow: 8; = 9gL(0;) = —g log Zs — E..[0p Us].
Computation of 0y log Zy:

00 Z

o [ ~Uot L g _
20 / 39 Ug (X)e Zg dx ]Eg [89 Ug]

Gradient flow

0(t) = Eg)[09 Ug(e)] — Ex[09 Ug(s)]-

E. [0 Up): is computed on the training samples ~ < 3. 9 Up(x!)
E¢:[0p Ug]: needs samples from the current model py,



Proof of convergence.
82 UZ(X) = eizei(X7b) /2/Uz(X) ~ 1x is close to b hence

—w

€]

v E,[0,U,] =~ P, de b) = ————
zZ,w [ ] ( mode b) T
~ e—z(t) e~

T14e 0 1qez’

z(t)

Clearly this system converges towards its unique FP z(t) = z,.

When estimating E, using the samples x! there can be a small
correction: the empirical mass of mode b is replaced with G, =

152 with |2, — 2| = O(n™1/2).

w! 1’ 1 W ¢ 1



MCMC sampling is too costly

Q: at each gradient step, how do we estimate Eg[0p Ug]?
A: using MCMC methods...

At step t, initialize Xd' (“walkers”), then for 7 =0,..., T,

X7l'+1 77V UH + \/ €‘r

and estimate

Nualkers

Z Ao Up(e) (X7, )-

Eo(e)[00 Up(e)] =

walkers

If Thix is large, this is too costly. Each gradient ascent step will consume
Tmix MCMC sampling steps for each of the N,kers chains!

cost = O(Ntraining steps X Nuaikers % Tmix)



Contrastive Divergence with k steps (CD-k), Hinton 2005

e don't let the chain reach T, steps. Use only k steps (k = 1).

e initialize each chain directly at the training points {x!}.

Let Py be the distribution of the negative samples. The Gradient Flow
becomes
0(t) = Eo(t)[06 Up(t)] — Ex[06 Up(r)]-

[Hyvarinen 2007]
in the limit of small noise  — 0, CD-1 = score matching.

[Yair and Michaeli 20] CD-1 is an adversarial game



Persistent Contrastive Divergence (PCD), [Tieleman 2008]

e don't let the chain reach T steps. Use only k steps (k = 1).

- rea L " s}

e initialize each chain directly where the previous chain ended.
Practically: maintain a set of walkers X/. At step t + 1,
. N .
1) approximate Eq, [0p Ug()] ~ % > im1 9o Ugey (X)),
2) compute 611 using the approximation,

3) move the walkers with X;11 = X; — 9V Up(e11)(Xe) + V21

Let ]f”g(t) be the distribution of X;. The gradient flow becomes
0(t) = Eo(r) [0 Ug ()] — B[99 Up(y)-
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Mode collapse: one of the two modes disappears
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Proof of mode collapse.
VUZ(X) ~ (X - a)lx close to a T (X - b)lx close to b

so if X, is close to b, dX; ~ —(X; — b)dt + v/2dB;: this is an
Ornstein-Uhlenbeck process centered at b. The two modes are stable.

There is no transfer of walkers from one mode to the other.

The distribution of X; does not change and is equal to p,(), hence te

system becomes

) efz(O) e~z
t) ~ = .

O~ =0 Tren

This leads to mode collapse, z(t) — +oo.
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Reweighting PCD with
Jarzynski’s identity




Searching for the reweighting

Let U; be any family of evolving potentials (such as Uy, given above).
Consider the dynamics

dX; = —VU,(X;)dt + V2dB;

Note §; the law of X; and p; = e~ Yt/ Z,.

8tﬁt = Aﬁt -V (V Utﬁt)

pr also solves this Fokker-Planck equation, hence p; = p; only at
equilibrium; in general p; # ps.

What is 92:7
Pt
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Jarzynski’'s augmented system

We add an auxiliary weight W; to the system:

dX: = —VU(X;)dt + V2dB; Xo ~ po (1)
dW, = —W, Uy(X;)dt Wo =1 (2)

Note that W; is an explicit path integral: W; = exp {— fot US(XS)ds}.
Theorem (Jarzynski reweighting)

E[p(X:) We]

E[Wt] — EytN,)t[QO( Yt)]

First appearance: for the computation of Z;/Zy, [Jarzynski 1996]
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Proof outline

pt(x, w) = density of (X¢, W;)

Define 1¢(x) = [~ wpe(x, w)dxdw, so that
Blp(X) W = [ (ue(x)ae

1. Use Fokker-Planck for (1)-(2) to get

fre =V - (VUepir + Vi) + Utll/t (3)

2. Check that p, = e~ Y~l°eZ also solves (3)

3. Unicity of solutions of parabolic PDEs
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Algorithm 1 Sequential Monte-Carlo training with Jarzynski correction

L Aj=1fori=1,....N.
2: for k=0,...,K—-1do

3:

© N S g &

Vi = vazl Wi Up, (Xi) — n~! > i1 00U, (x) > gradient

Oki1 = opt(@k, Vi) > optimizer
fori=1,...,Ndo
Xi = Xk — hV Uy, (X]) + V2h¢] > ULA
Wi, , = Wie e (Xisn X+ (X Xia) > update weight

Resampling step (optional).
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Figure 1: Learning also the modes
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Fully Discrete version

X = discrete space, Uy : X — R

My(-,-) = Markov kernel family on X with e=Y% /Z, as reversible
distribution

Let Xx and Ai be given by the following discrete random dynamic:

Xir1 ~ MGt (X, ) (4)
A1 = Ax + Uy, (Xk) — Up,., (X). (5)
Then, for all k,
E[e? 0y Uy (X,
By, [0 Up,] = 00 Vo (X)) Zo, =E[e™]  (6)

E[eA]
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Discrete setting

data samples true heatmap cd ped jarzynski modes masses

Figure 2: X’ = quantized Gray-coded version of [0, 1]>. Here |X| = 2%
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Some references

How to train your EBMs (Song & Kingma)
Improved CD (Du et al.)

Reduce, Reuse, Recycle (Du et al.)
Annealed Importance Sampling (Neal)
Gradient-guidance (Liu et al.)

Jarzynski reweighting (Carbone, Hua, C., Vanden-Eijnden)
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