Extremal eigenvalues of sparse random graphs

Simon Coste

thesis defence

PhD under the supervision of Charles Bordenave and Justin Salez

LPSM (Université Paris Diderot) IMT (Université Paul Sabatier)
I

Spectral gap of sparse random digraphs
Let $G = (V, E)$ be any finite graph (directed or undirected)

- (out)-degree of vertex x:

$$\deg_G(x) = |\{y \in V : (x, y) \in E\}|$$

- Transition matrix of the simple random walk on G:

$$P_{x,y} = \frac{1}{\deg_G(x)} \mathbf{1}\{(x, y) \in E\}$$

- We order the eigenvalues of P by decreasing modulus:

$$1 = |\lambda_1(P)| \geq \cdots \geq |\lambda_n(P)|$$
Introduction: Ramanujan graphs, Ramanujan digraphs

\[G_n, d = \text{set of undirected } d\text{-regular graphs on } n \text{ vertices (} n \text{ even)} \]

\[G_n = \text{uniform random variable on } G_n, d \]

Theorem (Alon-Friedman)

Then with high probability as \(n \to \infty \), we have

\[|\lambda_2(P_n)| \rightarrow \frac{2}{\sqrt{d}} - \frac{1}{d}. \]

Question

What happens with \(\vec{G_n}, d \), the set of uniform \(d\)-regular directed graphs?

Conjecture [Parzanchevski]:

\[|\lambda_2(P_n)| \rightarrow 1 \frac{\sqrt{d}}{d}. \]
Introduction: Ramanujan graphs, Ramanujan digraphs

$\mathcal{G}_{n,d}$ = set of undirected d-regular graphs on n vertices (nd even)
G_n = uniform random variable on $\mathcal{G}_{n,d}$
P_n = transition matrix of the simple random walk on G_n

Theorem (Alon-Friedman)

Then with high probability as $n \to \infty$, we have

$$|\lambda_2(P_n)| \xrightarrow{n \to \infty} \frac{2\sqrt{d - 1}}{d}.$$
Introduction: Ramanujan graphs, Ramanujan digraphs

$\mathcal{G}_{n,d}$ = set of undirected d-regular graphs on n vertices (nd even)
G_n = uniform random variable on $\mathcal{G}_{n,d}$
P_n = transition matrix of the simple random walk on G_n

Theorem (Alon-Friedman)

Then with high probability as $n \to \infty$, we have

$$|\lambda_2(P_n)| \xrightarrow{n \to \infty} \frac{2\sqrt{d-1}}{d}.$$

Question

What happens with $\bar{\mathcal{G}}_{n,d}$, the set of uniform d-regular directed graphs?

Conjecture [Parzanchevski]: $|\lambda_2(P_n)| \to \frac{1}{\sqrt{d}}$.
The model: directed configurations

\[\mathbf{d} = (d + 1, d - 1, \ldots, d + n, d - n) \]

sequence of integers greater than 2

\[M(d) = \text{set of directed multigraphs on } n \text{ vertices, such that for every vertex } i, \]
\[\text{indegree}(i) = d - i \quad \text{outdegree}(i) = d + i \]

We must have
\[d + 1 + \cdots + d + n = d - 1 + \cdots + d - n = m \]
if we want \(M(d) \neq \emptyset \).

\[G = \text{uniform random variable on } M(d) \]
\[P = \text{transition matrix of the SRW on } G \]

Difficulties

- \(P \) is not normal or 'almost' normal.
- The eigenvalues of \(P \) are complex + no min-max characterizations.
- The stationary measure \(\pi \) is unknown when \(d \) is not constant.
The model: directed configurations

- $\mathbf{d} = (d_1^+, d_1^-, \ldots, d_n^+, d_n^-)$ sequence of integers greater than 2
- $\mathcal{M}(\mathbf{d}) =$ set of directed multigraphs on n vertices, such that for every vertex i,
 \[\text{indegree}(i) = d_i^- \quad \text{outdegree}(i) = d_i^+ \]

- We must have $d_1^+ + \cdots + d_n^+ = d_1^- + \cdots + d_n^- := m$ if we want $\mathcal{M}(\mathbf{d}) \neq \emptyset$.
- $G =$ uniform random variable on $\mathcal{M}(\mathbf{d})$
- $P =$ transition matrix of the SRW on G
The model: directed configurations

- \(d = (d_1^+, d_1^-, \ldots, d_n^+, d_n^-) \) sequence of integers greater than 2
- \(\mathcal{M}(d) = \) set of directed multigraphs on \(n \) vertices, such that for every vertex \(i \),
 \[
 \text{indegree}(i) = d_i^- \quad \text{outdegree}(i) = d_i^+
 \]

- We must have \(d_1^+ + \cdots + d_n^+ = d_1^- + \cdots + d_n^- := m \) if we want \(\mathcal{M}(d) \neq \emptyset \).
- \(G = \) uniform random variable on \(\mathcal{M}(d) \)
- \(P = \) transition matrix of the SRW on \(G \)

Difficulties

- \(P \) is not normal or ‘almost’ normal.
- The eigenvalues of \(P \) are complex + no min-max characterizations.
- The stationary measure \(\pi \) is unknown when \(d \) is not constant.
Result: spectral gap for directed configurations

Let $d^{(n)} = (d_1^+, d_1^-, \ldots, d_n^+, d_n^-)$ be integer sequences.

- $\sum d_i^+ = \sum d_i^- := m$ is the number of directed edges.
- There is an integer $\Delta \geq 2$ such that for every n,

$$2 \leq \delta = \min d^{(n)} \leq \max d^{(n)} \leq \Delta.$$

Theorem (C., 2017)

Let G_n be a uniform random variable on $\mathcal{M}(d^{(n)})$, with transition matrix P_n. For any $\varepsilon > 0$, with high probability as n goes to infinity,

$$|\lambda_2(P_n)| \leq \max \left(\frac{1}{\delta}, \sqrt{\frac{1}{m} \sum_{i=1}^{n} \frac{d_i^-}{d_i^+}} \right) + \varepsilon.$$
Result: spectral gap for directed configurations

Let \(d^{(n)} = (d_1^+, d_1^-, \ldots, d_n^+, d_n^-) \) be integer sequences.

- \(\sum d_i^+ = \sum d_i^- := m \) is the number of directed edges.
- There is an integer \(\Delta \geq 2 \) such that for every \(n \),

\[
2 \leq \delta = \min d^{(n)} \leq \max d^{(n)} \leq \Delta.
\]

Theorem (C., 2017)

Let \(G_n \) be a uniform random variable on \(\mathcal{M}(d^{(n)}) \), with transition matrix \(P_n \). For any \(\varepsilon > 0 \), with high probability as \(n \) goes to infinity,

\[
|\lambda_2(P_n)| \leq \max \left(\frac{1}{\delta}, \sqrt{\frac{1}{m} \sum_{i=1}^n \frac{d_i^-}{d_i^+}} \right) + \varepsilon
\]

Corollary: in a random directed \(d \)-regular (multi)graph, \(|\lambda_2(P_n)| \leq 1/\sqrt{d} + \varepsilon \) whp.
The degree sequence $d^{(n)}$ is chosen so that

$$\max\{\delta^{-1}, \rho\} = \rho$$

Circle in red = ρ, circle in green = δ^{-1}
Spectrum of P_n
The degree sequence $d^{(n)}$ is chosen so that

$$\max\{\delta^{-1}, \rho\} = \delta^{-1}$$

Circle in red = ρ, circle in green = δ^{-1}
Extended states at zero in sparse Erdős-Rényi graphs
Erdős-Rényi graphs

$G_n \sim \text{Erdős-Rényi } (n,p)$

- G_n is an undirected loopless graph on n vertices
- Each edge (x,y) appears independently with probability p.

$A_n = \textbf{adjacency} \text{ matrix of } G_n \text{ (Hermitian)}$
Erdős-Rényi graphs

$G_n \sim$ Erdős-Rényi (n,p)

- G_n is an undirected loopless graph on n vertices
- Each edge (x,y) appears independently with probability p.

$A_n = \text{adjacency}$ matrix of G_n (Hermitian)

Empirical spectral distribution of the spectrum of A:

$$
\mu_n := \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i(A)}(A)
$$
Eigenvalues of Erdős-Rényi graphs, dense case

Spectrum of a realization of an undirected Erdős-Rényi graph

\[n = 10000, p = \frac{1}{2} \]

This is Wigner’s semicircle distribution (rescaled).
Closed form, absolutely continuous, bounded support, bounded density...
Pictures: eigenvalues of Erdős-Rényi graphs, sparse case
Pictures: eigenvalues of Erdős-Rényi graphs, sparse case

Spectrum of a realization of an undirected Erdős-Rényi graph

\[n = 10000, p = c/n \]
Almost surely, μ_n converges weakly to some deterministic probability measure μ_c.

[Zakharevich, 06] [Bordenave, Lelarge, 07] [Abért, Thom, Virág, 16]...
Almost surely, μ_n converges weakly to some deterministic probability measure μ_c.

[Zakharevich, 06]
[Bordenave, Lelarge, 07]
[Abért, Thom, Virág, 16]
...

Almost surely, μ_n converges weakly to some deterministic probability measure μ_c.

[Zakharevich, 06]
[Bordenave, Lelarge, 07]
[Abért, Thom, Virág, 16]
...

What are the properties of μ_c?
What happens around zero? The [Bauer, Golinelli, 2000] conjecture
What happens around zero? The [Bauer, Golinelli, 2000] conjecture

$c = 2$

$c = 2, 6$

$c = 2, 8$

$c = 3$

(log scale for the x-axis)
Definition
We say that a measure μ has no extended states at E if

$$\lim_{\varepsilon \to 0^+} \frac{\mu([E - \varepsilon, E + \varepsilon]) - \mu\{E\}}{2\varepsilon} = 0.$$
Definition
We say that a measure μ has no extended states at E if

$$\lim_{\varepsilon \to 0^+} \frac{\mu([E - \varepsilon, E + \varepsilon]) - \mu(\{E\})}{2\varepsilon} = 0.$$

Theorem (C, Salez, 2018)

- If $c < e$ then μ_c has no extended states at zero.
- If $c > e$ then μ_c has extended states at zero.

+ easy generalization [C, 19]: μ_{ske} has no extended states at zero.
Hints for the explanation of a transition at $e \approx 2.718$.

Karp and Sipser analysis (1981) of the leaf-removal algorithm applied to G_n:

- Leaf-removal preserves the dimension of the kernel of A_n.
- It yields a 2-core C_n and J_n isolated vertices.
- $|C_n| = o(n)$ if and only if $c \leq e$.

Value of the atom at zero [BLS 2015]:

$$\mu_c(\{0\}) = \lim_{n \to \infty} \frac{\dim \ker(A_n)}{n} = e^{-cx} + cxe^{-cx} + x - 1$$

where x is the smallest solution in $(0, 1)$ of $x = e^{-ce^{-cx}}$.
Extremal eigenvalues of weighted directed Erdős-Rényi graphs
Motivation: the problem of matrix reconstruction

\[
P = \begin{pmatrix}
1 & 7 & 6 & 1/\pi & 1.5 & e^2 \\
7 & 0 & 2^{100} & 1 & 3 & 1/7 \\
6 & 2^{100} & \sqrt{5} & 0 & 1 & \pi \\
1/\pi & 1 & 0 & 8 & -1 & 2019 \\
1.5 & 3 & 1 & -1 & 1.5 & \pi^e \\
e^2 & 1/7 & \pi & 2019 & \pi^e & \zeta(5)
\end{pmatrix}
\]
Motivation: the problem of matrix reconstruction

\[P' = \begin{pmatrix} 7 & 7 & e^2 \\ 7 & \sqrt{5} & 0 \\ 1/7 & -1 & \pi^e \end{pmatrix} \]

Can you recover \(P \)?
Can you recover some parts of \(P \) (singular values, singular vectors)?

General, informal answer
If \(P \) is not too complex (low rank, delocalized entries) and if at least \(n \log n \) entries are revealed, one can recover \(P \).

[Candès-Tao 09, Candès-Recht 10, Keshavan-Montanari-Oh 09, Chatterjee 15, ...]
The mathematical model

Hypotheses on P:

1. P is Hermitian with positive eigenvalues:

 $$P = \sum_{i=1}^{r} \mu_i \phi_i \phi_i^* \quad \text{with} \quad 0 < \mu_r \leq \cdots \leq \mu_1.$$

2. Low rank: $r = O(\text{polylog}(n))$.

3. Delocalized eigenvectors: $|\phi_i|_\infty = O\left(\frac{1}{\sqrt{n}}\right)$.

Each entry $P_{x,y}$ is observed independently with probability d/n (we restrict to $d > 1$).

Matrix of observations:

$$A_{x,y} = \begin{cases} \frac{n}{d} P_{x,y} & \text{if entry } (x,y) \text{ is observed.} \\ 0 & \text{if not.} \end{cases}$$

The rescaling is chosen so that $\mathbf{E}[A] = P$.
Define $Q_{x,y} = nP_{x,y}^2$ and $\rho = \|Q\|$.

$$\vartheta = \sqrt{\frac{\rho}{d}} \quad \vartheta_0 = \frac{\max_{x,y} |P_{x,y}|}{d}$$

$r_0 \in \{0, \ldots, n\} = \text{number of eigenvalues of } P \text{ above the threshold } T = \max\{\vartheta, \vartheta_0\}$:

$$\mu_r \leq \cdots \leq \mu_{r_0+1} \leq \max\{\vartheta, \vartheta_0\} < \mu_{r_0} \leq \cdots \leq \mu_1$$

Theorem (Bordenave, C., Nadakuditi, in preparation)

With high probability as $n \to \infty$, the r_0 eigenvalues of A with greatest modulus are converging towards μ_1, \ldots, μ_{r_0}. All the other eigenvalues of A are smaller than $\max\{\vartheta, \vartheta_0\} + o(1)$.

Corollary:

$A = \text{adjacency matrix of a directed Erdős-Rényi graph with } p = d/n$. Then whp,

$$\lambda_1(A) \to d \quad \text{and} \quad \max_{k>1} |\lambda_k(A)| \leq \sqrt{d} + o(1).$$
Illustrations: spectrum of A for a fixed P and different d

$$P = \varphi_1 \varphi_1^* + 2 \varphi_2 \varphi_2^* + 3 \varphi_3 \varphi_3^*$$ with the φ_i delocalized

For this P we always have $\max\{\vartheta, \vartheta_0\} = \vartheta = \sqrt{\rho/d}$ for $d > 1$.

$d = 5$ which yields $\vartheta \approx 2.44$: in this case $\mu_1 < \mu_2 < T < \mu_3$.
Illustrations: spectrum of A for a fixed P and different d

$$P = \varphi_1 \varphi_1^* + 2 \varphi_2 \varphi_2^* + 3 \varphi_3 \varphi_3^*$$

with the φ_i delocalized

For this P we always have $\max\{\vartheta, \vartheta_0\} = \vartheta = \sqrt{\rho/d}$ for $d > 1$.

$d = 15$ which yields $\vartheta \approx 1.30$: in this case $\mu_1 < T < \mu_2 < \mu_3$.
Results: recovering eigenvectors in the rank-one case

We suppose $P = \varphi \varphi^*$ (rank-one case).

Theorem (phase transition for rank-one matrices)

With high probability, the following holds:

1. If $d < n |\varphi|^4_4$ then $\max_{k \in [n]} |\lambda_k(A)| \leq \sqrt{\frac{n |\varphi|^4_4}{d}} + o(1)$.

2. If $d > n |\varphi|^4_4$:

 $\lambda_1(A) \to 1$ and $\max_{k > 1} |\lambda_k(A)| \leq \sqrt{\frac{n |\varphi|^4_4}{d}} + o(1)$.

Moreover, if ψ is the normalized eigenvector of A associated with λ_1, then

$$|\langle \psi, \varphi \rangle| \sim \sqrt{1 - \frac{n |\varphi|^4_4}{d}}.$$

(Remark: $n |\varphi|^4_4 \ll 1$ because of localization of φ)

⇒ ‘sparse non-symmetric’ version of the BBP transition.
$P = \varphi \varphi^*$; we observe A and want to recover φ.

Three PCA-like estimators:

1. Compute the SVD $A = \sum \sigma_i \zeta_i \xi_i^*$. Use the estimator
 \[\hat{\varphi}_{\text{svd}} = \zeta_1. \]

2. Use the fact that P is known to be Hermitian! Set $A_{\text{sym}} := (A + A^*)/2$ and write the spectral decomposition $A_{\text{sym}} = \sum \gamma_i \chi_i \chi_i^*$. Use the estimator
 \[\hat{\varphi}_{\text{sym}_eig} := \chi_1. \]

3. Simply use the eigenvectors of A:
 \[A \psi = \lambda_1 \psi \quad \text{with} \quad \lambda_1 \sim 1 \]
 and use
 \[\hat{\varphi}_{\text{asym}_eig} = \psi_1. \]

Quality measurements of the estimators $|\langle \varphi, \hat{\varphi}_* \rangle|$ and $|\varphi - \hat{\varphi}_*|_\infty$.
Numerics (Raj Rao N)
Proof method: ingredients

1. ‘pseudo-eigenvectors’ of A:

$$u_i = \frac{A^\ell \phi_i}{\mu_i^\ell} \quad v_i = \frac{(A^*)^\ell \phi_i}{\mu_i^\ell}$$

2. Diagonalizable proxy for A:

$$S = \sum_{i=1}^{r_0} \mu_i^\ell u_i v_i^* = UD^\ell V^*$$

3. High-trace method:

$$||A^\ell - S|| \lesssim \left[\max\{\vartheta, \vartheta_0\} \right]^\ell = o(||S||). \quad (1)$$

4. Bauer-Fike-style arguments
Future research directions

Spectral gaps:
- Simple configuration models or non-regular sparse graphs: using the non-backtracking matrix and/or the universal cover of the graph
- Alon-Boppana bounds for non-normal operators?
- Higher-dimensional simplicial complexes?

Asymptotic spectral properties of sparse graphs:
- More on the continuous part of μ?
- Monotonicity of the total mass of atoms in c?

Matrix reconstruction from $O(n)$ entries:
- Ongoing extensions of the results in Section 4: non-square problems P, using non-backtracking matrices. Extension to tensors.
- MMSE approach to the problem: fundamental limits VS our threshold
- Theory explaining why non-symmetry can perform well... even in symmetric problems.
Future research directions

Spectral gaps:

- Simple configuration models or non-regular sparse graphs: using the non-backtracking matrix and/or the universal cover of the graph
- Alon-Boppana bounds for non-normal operators?
- Higher-dimensional simplicial complexes?
Future research directions

Spectral gaps:

- Simple configuration models or non-regular sparse graphs: using the non-backtracking matrix and/or the universal cover of the graph
- Alon-Boppana bounds for non-normal operators?
- Higher-dimensional simplicial complexes?

Asymptotic spectral properties of sparse graphs:

- More on the continuous part of \(\mu_c \) ?
- Monotonicity of the total mass of atoms in \(c \)?
Future research directions

Spectral gaps:

- Simple configuration models or non-regular sparse graphs: using the non-backtracking matrix and/or the universal cover of the graph
- Alon-Boppana bounds for non-normal operators?
- Higher-dimensional simplicial complexes?

Asymptotic spectral properties of sparse graphs:

- More on the continuous part of μ_c?
- Monotonicity of the total mass of atoms in c?

Matrix reconstruction from $O(n)$ entries:

- Ongoing extensions of the results in Section 4: non-square problems P, using non-backtracking matrices. Extension to tensors.
- MMSE approach to the problem: fundamental limits VS our threshold
- **Theory explaining why non-symmetry can perform well...**
 even in symmetric problems.